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It is shown that the primary contribution to the field-emission current comes from electrons with total
momentum equal to zero in a direction parallel to the metal surface and that the field-emission current
measures the density of states at a point several angstroms from the metal surface. An explicit expression is
derived for the error made in using the transfer-Hamiltonian technique to calculate the tunneling probability
of an electron through a one-dimensional barrier, and it is pointed out that the error is small in the case of

field emission.

In this comment we amplify and clarify some of
the conclusions of “Field emission as a probe of
the surface density of states” by Penn and Plum-
mer (PP).! More explicitly, we make the follow-
ing points. (a) PP concluded that electrons with
reduced momentum nearly equal to zero in a direc-
tion parallel to the metal surface make the pri-
mary contribution to the field-emission current.
We show here that it is actually electrons with
total momentum nearly equal to zero in a direction
parallel to the surface which are mainly respon-
sible for the observed field-emission current. (b)
PP stated that field emission measures the metal
density of states at the classical turning point
(roughly 2 A outside the metal surface). We note
that rather than measuring the density of states at
the turning point the field-emission current mea-
sures the density of states at a location in the
tunneling barrier where the total potential is es-
sentially one dimensional (about 4 A from the sur-
face). (c) The work of PP was based on the trans-
fer-Hamiltonian method. We derive an explicit
expression for the error involved in using that
method which is valid for arbitrary barrier,
shapes, and we point out that the error is small
in the case of the field-emission barrier.

(a) PP showed that field-emission measurements
of the total energy distribution from a clean metal
surface provide ‘aformation about the density of
states near the surface. The field-emitted cur-
rent per unit energy at energy w was shown to be
given by Eq. (23) of PP:

j(@) = (27/m) Sf (0) 3_DE[E,, - (h%/2m) (R 1)?)
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where S is the surface area of the metal, f(w) is
the Fermi function, } , denotes a sum over metal
eigenstates, D2 is the usual barrier penetration
probability with image potential corrections, E,,
is the metal eigenvalue, K™ is the electron mo-
mentum parallel to the metal surface, and N, is
a factor which matches the amplitude of the WKB
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wave function in the barrier to the metal wave
function. The physical basis for Eq. (1) is that
throughout the major portion of the barrier
through which electrons tunnel the potential is
very nearly a function of x only (the coordinate in
the direction normal to the surface) and is nearly
independent of y and z. Thus the major part of
the tunneling process can be handled one dimen-
sionally by the WKB method even though the wave
function within and at the surface of the metal de-
pends on y and z as well as x and is not at all
free-electron-like; the WKB-type wave function
that obtains in the barrier must be given the
proper amplitude so as to match it to the three-
dimensional wave function of the metal. This
matching factor is N, of Eq. (1). The factor N,,
takes into account the non-free-electron char-
acteristics of the metal as well as the symmetry
properties so that N,, can, for example, vanish
by reason of symmetry for a d-band electron
traveling along a symmetry axis. Thus, Eq. (1)
is entirely consistent with the work of Politzer and
Cutler.?

Equation (1) can be rewritten in a way which
makes physical interpretation more transparent.
The metal wave function can be expanded as

lpm(;) = Z a(é’:l)(x) e* (E’fll -au)'z , (2)

where the set {(-‘;l,} comprises the parallel compo-
nents of {6}, 5 is parallel to the surface and the
reciprocal-lattice vectors that are chosen to rep-
resent the Bloch waves. The requirement that
zpm(f) satisfy the Schrédinger equation yields

n: @ e Tm_ & )2 (m)
(—m ez o K -G,) —E+V0(x)) a@(x)

-

G2y Vau-a;) (x) a((__‘;":’l) (x) ’ ®)
where Va”(x) is the _él,th Fourier component of the
potential V(r). In the region of the barrier where

the potential depends only on x, Vg (x) =0 for G, #0.
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In this region the right-hand side of Eq. (3) is zero
and each component a"") of the wave function
satisfies a one- d1mens1ona1 Schrédinger equation

(_ 7t 822 . Vo(x)) ""’(x)

2m ox
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At the point x; defined in PP to be an arbitrary
point far into the barrier region, the potential is

one-dimensional and the solutions of Eq. (4) for
a"’"(xo) are decaying exponentials. The dominant
term in Eq. (2) is consequently a{™ (x,), which
is given by the WKB approximation

."m.
U ) = o () € FE1

] -> -
NmK:nllz(xO) exp(- J‘ Kmdx'*'iklyln' p)s

*m

(5a)
Kn=@m/E 2 [V, = E,+(2/2m)RTV]2,  (5b)
where N, is the amplitude of the WKB wave func-

tion and x,, is the turning point as explained in PP,
Let 2, (x) be that G, =0 solution of Eq. (4) which

becomes k712 exp( - f:m kndx) forlarge x. Thenby
the definition of ,,(x)
af™ (%) = NyAp(x). (8)
Evaluating (6) at x =x, gives
Np= 0™ ) A (7a)
where
A = A ) (7o)

Expression (7a) for N,, is similar to (30a) of PP
but is more accurate. It reduces to (30a) of PP
only if the G, #0 components a‘""(x) of ¥ (T) are
negligible at x =x,. From Eq. 2) we note that
(7a) can be written

N, =ai™(x)/r,

|

= J;x ds e-ii'ﬂ'ﬁ d)m(‘f)/km , (8)

where the integral is taken over the surface x =x,,.
Consequently Eq. (31) of PP is valid if ¥,(x,) in
(31) is replaced by

afm(x) = s S e FiP il (F) 9)

X=X m
to give

§(w) = (27/m)Sf(w) x"3(w)

Z 2(E,, ~ (h2/2m)(Km)?]

x |a§M(x,) |2 6(w-E,,) . (10)

The earlier comments pertaining to the validity of
Eq. (1) apply to Eq. (10) as well. The interpreta-
tion of Eq. (10) is not quite as simple as that of
Eq. (31) in PP which it replaces because of the
area average of ¥ (?) involved in a{™(x,). From
Eq. (2), laf™(x,) 2 is the probability that an elec-
tron at the dlstance X, from the surface has a
total momentum E{f parallel to the surface. The
tunneling probability D, is appreciable only if
kI'=~0; hence j(w) measures the density of state at
energy w and position x, of those electrons having
zero total momentum parallel to the metal sur-
face. This is in contrast to Eq. (31) of PP which
implies that j(w) measures the density of states of
electrons having zero crystal momentum parallel
to the surface.

(b) In deriving Eq. (10) it was assumed that the
potential is a function of x only for x >x, where

n 1S the turning point. This approximation is

rather poor as discussed in PP, We now eliminate
that approximation. Let x, be a point sufficiently
far from the metal that the potential is essentially
one dimensional. From a calculation by Appelbaum
and Hamann® it appears that x,~3-4 A, It is
easily shown that for x =x, the WKB approxima-
tion is valid. Equation (5a) can be replaced by

-m - *0 - -
b (x0) = @ (x) e'™ '°=N;x;,”2<xo)exp(- f K,,,dx+ik's-p) . (11)

*c

Note that the lower limit of the integral in (11) is x,.

Because the WKB approximation is valid at x =x, one

has

Ny = o™ (x,) k3 2(x,). (12)
Proceeding as in PP leads to

(@) = @7/m)SAW) K p(x,) D DE[E, - (B2/2m)kT)?] |a§™(x,) |2 920(w - E,), (13a)

where
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ae) = [ ase G

and

2 =exp[2 f & dx(%’;’.)"z {Vo=eFx-[E, - (h'z/Zm)(k’ﬂ)z]}”z] :

m

In (13c) x,, is the turning point defined by
Vo(x,) = eFx,=E, - (F%/2m)(Em)? (14)

and V,(x) is the image potential. The factor ¢,
appears in (13a) because a{™ is evaluated at x,
rather than at x,, as in the less accurate Eq. (10).
The interpretation of (13a) is essentially the same
as that of Eq. (10) except that the current mea-
sures the density of states at x, rather than x,,
and the density of states is weighted by the factor
@ me

Again following PP and using Eq. (13) we con-
clude that R =j(w)/jo(w) measures the density of
metal states with total momentum normal to the
metal surface at a distance x, from the surface
where j,(w) is the usual free-electron expression
for the field-emission current.

(c) We now derive an expression that relates the
exact one-dimensional tunneling current for a
barrier of arbitrary shape to the tunneling current
as determined by the Bardeen version of the trans-
fer-Hamiltonian theory. This provides a direct
justification for the use of the transfer-Hamiltonian
method in the case of the field-emission barrier
and should be useful for estimating the error
made by the transfer-Hamiltonian method for
other types of barriers as well.

For the sake of simplicity we will consider
tunneling through a rectangular barrier; however,
our considerations are equally valid for any
barrier. Figure 1(a) shows the barrier. Let ¥,
be an eigenfunction of the Hamiltonian that is out-
going away from the barrier at x=-~ and ¥, is
an eigenfunction that is outgoing at x =+<, The
probability that an electron tunnels from the left
side of the barrier to the right side is calculated
by assuming that the eigenfunction on the left con-
sists of an incoming part ¥¥* and an outgoing re-
flected part R¥,, while the eigenfunction on the
right consists only of a transmitted part T¥,. Let
xo be an arbitrary point in the barrier region.
Then ¥,(x,) is the wave function which is outgoing
at x =+, The boundary conditions at x, are then

d),l."*'Rlpl:Twr: (153)
VLRV, =T V!, (15b)

where it is understood that all wave functions are
evaluated at x =x,. The barrier penetration prob-

(13b)

(13c)

ability D is given by the ratio of the transmitted
to incident currents

D=(T wrljople)r)/(w*t |jop,wt> ) (16a)
where
w a ?
Jon = zz—m(ﬁ - 5) . (16b)

D is independent of the value of x at which j,, is
evaluated. We have chosen the point x=x,. Solv-
ing Eq. (15) for T and using the result in Eq. (16)
yields

D=4Ima,Imae,/|a,-q,|?, (172)
where

a, = Pixe)/ ¥ (%) (17b)
and

a,=9](xe)/ ¥ ,(x0) . (17¢)

The current is given by *
j=epD, (18)

where p is the density of states and v =9¢/9k is
the group velocity of an electron approaching the

Xo
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FIG. 1. (a) Square-well barrier potential through
which the tunneling probability is to be calculated. x; is
an arbitrary point in the barrier. (b) Left potential as-
sociated with Hy. ¢ denotes an eigenfunction of Hy.

(c) Right potential associated with Hg. ¥y denotes an
eigenfunction of Hp.
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barrier. The density of states is proportional to
(9€¢/8k)! and consequently

j=(2e/mR)D . (19)

The expression for the current obtained by the use
of Eq. (17) in Eq. (19) has been derived by Caroli
et al.® in a less direct manner.

The tunneling current in the transfer-Hamil-
tonian approximation is given by *

jr=(ne/m) |@.|H=H.|vp)|? 0108 » (20)

where H,;,¥,, and p; denote a left-system Hamil-
tonian, its eigenfunction, and density of states,
respectively. In the Bardeen version of the trans-
fer-Hamiltonian method the left- and right-system
Hamiltonians must satisfy

HL =H:
Hp=H, x=x, (21b)

x=x (21a)

where x; is an arbitrary point in the barrier and
H is the true Hamiltonian denoted in Fig. 1(a). If
H; and Hy satisfy the conditions of Eq. (21) then
Eq. (20) becomes*

jr=2"eﬁl<¢z, |joplwn>|szPR

=%ﬂeﬁsm-zl¢;e¢1:—ZPR%.IZPLPR

=3 mel®m™ py(%,) prlxo) | a; - Qp I 2, (22a)

where

ap =P7(x%)/¥rlx,) » (22b)

g = Pp(xo)/Yr(%o) (22¢)
and p; is the left-system density of states at x,,

pz(%0) = [2(x0) [* o, (22d)
and

pr(%0) = |Pr(xo) |2 PR - (22e)

A particular choice for the left-system Hamil-
tonian is shown in Fig. 1(b) and the right-system
Hamiltonian is chosen to be that of Fig. 1(c).

In order to relate the expression for the true
current given by Eq. (19) to the transfer-Hamil-
tonian result j, of Eq. (22a) we form

WL=(¢; z})L- wi ‘pt)xo (23)
from which it follows that

2 2
Ima, = % 'Tudji_ p.(x0) (24)

where we have used Im(¥;/¥;),, =0 which holds
because ¥, carries no current and we have used
the relation

pz(xo) = 7{2;[1)_';_ Im % (25)

which follows from the fact that in the region

x =< x, we have H; =H so that ¥, and ¥; are two
independent eigenfunctions of H;. An equation
equivalent to Eq. (24) holds for Ima,. Using
Eq. (24) in Eq. (19) to give j and comparing with
jr from Eq. (22) yields

(0 - a)(ap—a) |2

" (@ - a)ay-a,) (26)

Jjr=j |1

Thus the current j; calculated from the transfer
Hamiltonian differs from the true current j by a
correction term which is very small if a;~ a,
or ap= a,, Inthe case of the square barrier
¥, exp( - kx) and @, = -k while @, < [exp(~ kx)
+e"2*L ¢*] for x in the barrier region, where k is
wave vector of an electron in the barrier and L is
the width of the barrier. For large L it then
follows that

a, - a, ~ 2k exp| = 2x(L - xy)] 27)

and j, differs from j by an exponentially small
term. For a wide barrier of a simple shape such
as encountered in field emission it is clear from
Eq. (26) that jr=~j as long as a sensible choice for
H; or Hy is made. Generally speaking one should
choose H; =H or Hgp=H throughout the barrier
region if such a choice is convenient.

In conclusion, field emission measures the den-
sity of states with total momentum parallel to the
metal surface at a distance several angstroms
from the surface (the point at which the barrier
potential becomes essentially one dimensional).
Furthermore, an explicit formula for the error
made in applying the transfer-Hamiltonian method
to an arbitrary one-dimensional barrier has been
derived and used to justify the transfer-Hamiltonian
approach to the field-emission problem,

We wish to thank P. Soven and E. W. Plummer
for a number of useful conversations.

Note added in proof: Obviously, the conclu-
sion that the primai‘y contribution to the field
emission current is due to electrons with k2, ~0 is
based on the assumption that the factor N, in Eq.
(1) is not zero for electrons with 2,=~0. It has
been shown for W(100) by Politzer and Cutler? as
well as Modinos and Nicolau® and more recently
stressed by Feuchtwang, Cutler, and Gadzuk’ that
for symmetry reasons N, =~ 0 for states with k&, ~0
(at least for those states that lie near the Fermi
energy). Consequently, for W(100) field emission
does not measure the one-dimensional density of
states near the surface. However, Eqs. (10) and
(13) remain valid and so the current is still re-
lated to the density of states near the surface but
in a more complicated way.
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